Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular Doping of Graphene

Identifieur interne : 000197 ( Russie/Analysis ); précédent : 000196; suivant : 000198

Molecular Doping of Graphene

Auteurs : RBID : Pascal:08-0101444

Descripteurs français

English descriptors

Abstract

Graphene is considered as one of the most promising materials for post silicon electronics, as it combines high electron mobility with atomic thickness [Novoselov et al. Science 2004, 306, 666-669. Novoselov et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451-10453]. The possibility of chemical doping and related excellent chemical sensor properties of graphene have been demonstrated experimentally [Schedin et al. Nat. Mater. 2007, 6, 652-655], but a microscopic understanding of these effects has been lacking, so far. In this letter, we present the first joint experimental and theoretical investigation of adsorbate-induced doping of graphene. A general relation between the doping strength and whether adsorbates are open- or closed-shell systems is demonstrated with the NO2 system: The single, open shell NO2 molecule is found to be a strong acceptor, whereas its closed shell dimer N2O4 causes only weak doping. This effect is pronounced by graphene's peculiar density of states (DOS), which provides an ideal situation for model studies of doping effects in semiconductors. We show that this DOS is ideal for "chemical sensor" applications and explain the recently observed [Schedin et al. Nat. Mater. 2007, 6, 652-655] NO2 single molecule detection.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0101444

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Molecular Doping of Graphene</title>
<author>
<name sortKey="Wehling, T O" uniqKey="Wehling T">T. O. Wehling</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>1st Institute for Theoretical Physics, Hamburg University, Jungiusstrasse 9</s1>
<s2>20355 Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>20355 Hamburg</wicri:noRegion>
<wicri:noRegion>Jungiusstrasse 9</wicri:noRegion>
<wicri:noRegion>20355 Hamburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Novoselov, K S" uniqKey="Novoselov K">K. S. Novoselov</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>School of Physics and Astronomy, University of Manchester</s1>
<s2>M13 9PL, Manchester</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
</author>
<author>
<name sortKey="Morozov, S V" uniqKey="Morozov S">S. V. Morozov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute for Microelectronics Technology</s1>
<s2>142432 Chernogolovka</s2>
<s3>RUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Institute for Microelectronics Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vdovin, E E" uniqKey="Vdovin E">E. E. Vdovin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute for Microelectronics Technology</s1>
<s2>142432 Chernogolovka</s2>
<s3>RUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Institute for Microelectronics Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Katsnelson, M I" uniqKey="Katsnelson M">M. I. Katsnelson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute for Molecules and Materials, Radboud University of Nijmegen, Toernooiveld 1</s1>
<s2>6525 ED Nijmegen</s2>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>6525 ED Nijmegen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Germ, A K" uniqKey="Germ A">A. K. Germ</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>School of Physics and Astronomy, University of Manchester</s1>
<s2>M13 9PL, Manchester</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lichtenstein, A I" uniqKey="Lichtenstein A">A. I. Lichtenstein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>1st Institute for Theoretical Physics, Hamburg University, Jungiusstrasse 9</s1>
<s2>20355 Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>20355 Hamburg</wicri:noRegion>
<wicri:noRegion>Jungiusstrasse 9</wicri:noRegion>
<wicri:noRegion>20355 Hamburg</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0101444</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0101444 INIST</idno>
<idno type="RBID">Pascal:08-0101444</idno>
<idno type="wicri:Area/Main/Corpus">006E55</idno>
<idno type="wicri:Area/Main/Repository">006248</idno>
<idno type="wicri:Area/Russie/Extraction">000197</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorbates</term>
<term>Chemical properties</term>
<term>Chemical sensors</term>
<term>Dimers</term>
<term>Doping</term>
<term>Electron mobility</term>
<term>Electronic density of states</term>
<term>Graphene</term>
<term>Indium additions</term>
<term>Nitrogen dioxide</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dopage</term>
<term>Silicium</term>
<term>Mobilité électron</term>
<term>Propriété chimique</term>
<term>Capteur chimique</term>
<term>Adsorbat</term>
<term>Dioxyde d'azote</term>
<term>Dimère</term>
<term>Densité état électron</term>
<term>Addition indium</term>
<term>Semiconducteur</term>
<term>Graphène</term>
<term>Si</term>
<term>8105U</term>
<term>0707D</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Graphene is considered as one of the most promising materials for post silicon electronics, as it combines high electron mobility with atomic thickness [Novoselov et al. Science 2004, 306, 666-669. Novoselov et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451-10453]. The possibility of chemical doping and related excellent chemical sensor properties of graphene have been demonstrated experimentally [Schedin et al. Nat. Mater. 2007, 6, 652-655], but a microscopic understanding of these effects has been lacking, so far. In this letter, we present the first joint experimental and theoretical investigation of adsorbate-induced doping of graphene. A general relation between the doping strength and whether adsorbates are open- or closed-shell systems is demonstrated with the NO
<sub>2</sub>
system: The single, open shell NO
<sub>2</sub>
molecule is found to be a strong acceptor, whereas its closed shell dimer N
<sub>2</sub>
O
<sub>4</sub>
causes only weak doping. This effect is pronounced by graphene's peculiar density of states (DOS), which provides an ideal situation for model studies of doping effects in semiconductors. We show that this DOS is ideal for "chemical sensor" applications and explain the recently observed [Schedin et al. Nat. Mater. 2007, 6, 652-655] NO
<sub>2</sub>
single molecule detection.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>8</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Molecular Doping of Graphene</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WEHLING (T. O.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NOVOSELOV (K. S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MOROZOV (S. V.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VDOVIN (E. E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KATSNELSON (M. I.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GERM (A. K.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LICHTENSTEIN (A. I.)</s1>
</fA11>
<fA14 i1="01">
<s1>1st Institute for Theoretical Physics, Hamburg University, Jungiusstrasse 9</s1>
<s2>20355 Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Physics and Astronomy, University of Manchester</s1>
<s2>M13 9PL, Manchester</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute for Microelectronics Technology</s1>
<s2>142432 Chernogolovka</s2>
<s3>RUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute for Molecules and Materials, Radboud University of Nijmegen, Toernooiveld 1</s1>
<s2>6525 ED Nijmegen</s2>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>173-177</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000173972830310</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0101444</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Graphene is considered as one of the most promising materials for post silicon electronics, as it combines high electron mobility with atomic thickness [Novoselov et al. Science 2004, 306, 666-669. Novoselov et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451-10453]. The possibility of chemical doping and related excellent chemical sensor properties of graphene have been demonstrated experimentally [Schedin et al. Nat. Mater. 2007, 6, 652-655], but a microscopic understanding of these effects has been lacking, so far. In this letter, we present the first joint experimental and theoretical investigation of adsorbate-induced doping of graphene. A general relation between the doping strength and whether adsorbates are open- or closed-shell systems is demonstrated with the NO
<sub>2</sub>
system: The single, open shell NO
<sub>2</sub>
molecule is found to be a strong acceptor, whereas its closed shell dimer N
<sub>2</sub>
O
<sub>4</sub>
causes only weak doping. This effect is pronounced by graphene's peculiar density of states (DOS), which provides an ideal situation for model studies of doping effects in semiconductors. We show that this DOS is ideal for "chemical sensor" applications and explain the recently observed [Schedin et al. Nat. Mater. 2007, 6, 652-655] NO
<sub>2</sub>
single molecule detection.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A05T</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Doping</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Doping</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Propriété chimique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Chemical properties</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Capteur chimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Chemical sensors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Adsorbat</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Adsorbates</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dioxyde d'azote</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nitrogen dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Nitrógeno dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dimère</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Dimers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Densité état électron</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electronic density of states</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Graphène</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Graphene</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Graphene</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>8105U</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>056</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000197 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000197 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:08-0101444
   |texte=   Molecular Doping of Graphene
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024